Measuring and Predicting Data Value Using Scientific Literature

Kyle Hundman, Data Scientist
Measuring Value

• Nebulous, complex task
 • Publicity
 • Societal impact
• Science performed
• Science enabled
Focus on Literature

Science performed
Science enabled

Foundational to scientific discovery and research:
1. Literature
2. Proposals

One approach to linking is **data citations**
- Doesn’t detail extent, nature of usage
- Impact of publication/research is unclear
- Descriptive, not predictive
Input: “The spectrometer has a spatial resolution of 10 m.”

Output: { value: 10, unit: m, type: spatial resolution }
Sentinel-2’s classification of cutleaf teasel reached an accuracy of 82 to 84% in the two sites.

Relation: classification_accuracy
Species: cutleaf teasal
Accuracy: 82 - 84%
Spacecraft: Sentinel-2
Prob: 0.98

Start to answer questions:
• What were prior classification capabilities for cutleaf teasal?
• What is the impact to agricultural industry?
• Is there other data for this region that could improve this result?
HyspIRI Justification

- Mission justification in **Remote Sensing**
 - **HyspIRI** – hyperspectral imaging satellite

- Massive amounts of unstructured data
 - Web of Science search for “Remote Sensing” yields over 50,000 results

- Extraction relevant information such as:
 - Measurements (e.g. spatial resolution)
 - Satellite mentions
 - Geophysical variables

- Search, visualize, analyze, structure heterogeneous data
Curated Search

- Trends, outliers, exploratory analysis through faceted search

Search Results

Study of coastal wetland classification based on decision rules using ALOS AVNIR-2 images and ancillary geospatial data
Assessing the Value of HyspIRI

- Looking for quantifiable justification for HyspIRI mission (top down)
 - Measurement gaps
 - Types of scientific applications enabled
- Parsed 2,500 journal publications in remote sensing
 - joined with spectral reflectance data for various geophysical variables

- Example: { value: 1400, unit: nm, related: [spectral, clay, …] }
Decadal Survey for Earth Science

• “Generates consensus recommendations from the Earth and environmental science communities regarding a systems approach to space-based Earth Science observations.”

• Shapes science priorities and guides agency investments over the next decade

• Panel solicits input from community via two rounds of responses (RFIs)
Decadal Survey Motivations

• ~150 proposals

• **Goal:** Find optimal mission architecture using proposals

relationships between 3 facets of architecture:

<table>
<thead>
<tr>
<th>Orbit</th>
<th>Instrumentation</th>
<th>Measurement Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>low earth orbit (LEO)</td>
<td>radar</td>
<td>soil moisture</td>
</tr>
<tr>
<td>geostationary (GEO)</td>
<td>lidar</td>
<td>aerosols</td>
</tr>
<tr>
<td>constellation (CubeSats)</td>
<td>IR Sounder</td>
<td>ice thickness</td>
</tr>
</tbody>
</table>
Search, Viz, Drill-Down

Structured data on relations between orbits, surveying methods, measurement targets:

RFIs, JPL subject matter experts focused on infrared spectrometers in LEO
Optimal architecture = maximum science

Architectures can achieve certain measurement targets (infrared spectrometer in LEO is 1 of 2 architectures needed to measure formaldehyde)

Score = \frac{1}{2} = 0.5

Measurement targets can answer pressing science questions (formaldehyde is 1 of 6 key components to understanding levels of power production)

Score = \frac{1}{6} = 0.17

LEO + Infrared spectrometer science value = 0.5 * 0.17 = 0.085
Results

1. More granular, comprehensive view of data usage
2. Expedite analysis and exploration of scientific results to better understand value
2. Move toward identification of opportunities and prediction of value

More Efficient and Informed Science
Links

https://github.com/khundman/marve
http://deepdive.stanford.edu/
https://github.com/chrismattmann/facetview