
Evolution of Data Abstractions

Bits: 10110101000001001111001100110011

Bytes: 05e0 e6b0 343b 9c74 0804 e7bc

int, long, float, double, scientific notation:
 1, -506376193, 13.52, 0.177483826523, 1.02e-14

Array: [1.2, 3.6, 2.4, 1.7, -3.2]

Structure: {
 city: “Frisco”
 time: 2014-07-09T08:00
 temperature: 60
}

This is where data modeling forked. Computational
science data applications embraced multi-dimensional
arrays. Applications with less numeric data embraced
Relational Databases. A large divide remains between
these data management approaches.

The LaTiS data model is designed to capture the
underlying mathematical structure of all data models.
LaTiS extends the Relational Data Model by capturing
the functional relationships that are inherent in most
scientific data.

From the relational data model perspective, instead of
Representing data as only a sequence of Tuples (rows
in a table), LaTiS can express that some parameters
depend on others. From a multi-dimensional array
perspective, the dimensions of the array become first
class Variables as the domain of a Function. In this way,
the LaTiS data model captures the common abstraction
represented by both data models providing a new level
of interoperability. It also adds higher level functional
semantics to a dataset which is often a better
abstraction for reasoning about scientific problems.

Providing unified access to data via a common interface by describing
datasets in terms of a basic, yet extensible, data model that expresses
the functional relationships that are inherent in scientific data.

Example: Time series of gridded winds

Without structural semantics, just a collection of
variables (Tuple):
 (Time, Lon, Lat, U, V)
Add “time series” semantics by factoring out Time as the
independent variable:
 Time → (Lon, Lat, U, V)
Likewise, factor out geo-location as the domain of the
gridded wind values:
 Time → ((Lon, Lat) → (U, V))
Which is logically equivalent to the 3D array:
 U[nTime][nLon][nLat]
But can also be thought of as a 3 argument function
that is evaluated by values instead of indices:
 U(time: Double, lon: Double, lat: Double)
Which can be curried:
 U(time: Double)(lon: Double)(lat: Double)
And be partially evaluated to result in a new function:
 U(time=0) => U0(lon: Double, lat: Double)
...

LaTiS Data Model

Adapters

Writers

ASCII

Database

Binary

Aggregation

JSON

PNG Image

CSV

IDL code
snippet

Custom
Formats

Scala/Java

OPeNDAP (DAP2, DAP4 planned)

Operations

Unit Conversion

Mathematical
Computation

Selection
(time > 2012)

Custom
Operations

OGC Standards: WMS/WFS/WCS (planned) Search (planned)

Programming Interfaces

Service Interfaces

Native
Data Sources

Abstract
 LaTiS is a software framework for data access, processing, and output. The modular architecture
supports reusable and custom Readers to read a dataset from its native source, Operations to
manipulate the dataset, and Writers to output the dataset in the desired form. Datasets can be read
from diverse sources, combined in various ways to derive new datasets, and written to any number
of formats. LaTiS can enable simple access to a single data file or it can be used to orchestrate an
entire data processing workflow.
 The core feature of LaTiS that enables these capabilities is its Functional Data Model. This data
model extends the Relational Data Model to add the concept of Functional Relationships between
independent and dependent variables which are prevalent in scientific data. This model provides a
mathematical foundation for describing any dataset in terms of only three variable types:

 Scalar: A single Variable.
 Tuple: A group of Variables.
 Function: A mapping from one Variable (domain) to another (range).

 Since Variables can be any one of these three types, they can be composed in arbitrarily complex
ways to represent the underlying nature of any dataset. LaTiS does not simply provide an alternate
data model, it can be used to represent the fundamental mathematical structure of any other data
model. In other words, any data model can be mapped to the lower level LaTiS Data Model. The
Variable types can then be extended to add semantics that are specific to a particular scientific
discipline (e.g. Temperature as a specific type of Scalar). The resulting datasets can still be used by
those outside that discipline, albeit with a loss of the extra semantics, because the model
representation can always be reduced to the basic three variable types. In this way, LaTiS provides
a new level of interoperability between disparate datasets.
 The Open Source Scala implementation of the LaTiS Data Model
(https://github.com/dlindhol/LaTiS) is designed to serve as a Domain Specific Language (DSL) for
scientific data analysis. The version 2.x series is in part a testbed for the evolution of the LaTiS
DSL. Version 3 of LaTiS will provide a full featured interactive data analysis tool using the Scala
REPL (command-line interface) to build on the ability of LaTiS to represent scientific datasets with
higher level Functional semantics (e.g. time series of grids) as opposed to the more commonly used
multi-dimensional array constructs. Combining the Functional semantics of the data model with the
Functional Programming constructs of Scala promises to be quite powerful.
 Perhaps the current "killer app" for the LaTiS framework is its web service interface to the
underlying LaTiS DSL. This RESTful API implements the standardized OPeNDAP (DAP2) data
request and reply specification. Data providers can easily install a LaTiS Server and expose the
datasets they wish to serve by creating TSML dataset descriptors. The service layer will accept
queries that include selection constraints (e.g. time > 2014-05-01), as opposed to requiring array
index notation, and function calls (e.g. format_time(yyyyDDD)) that can subset, aggregate, and
perform other operations on the server before writing the resulting dataset to the client.

Doug Lindholm (doug.lindholm@lasp.colorado.edu)

LaTiS

Fill my array!

Object Diagram
C

o
re

 D
a

ta
 M

o
d

e
l

B
a

si
c

 E
xt

e
n

s
io

n
s

C
u

s
to

m
 E

xt
e

n
s

io
n

s

 <dataset>
 <adapter class=”...” location=”...” />

 <function type=”TimeSeries”>

 <time units=”days since 1980-01-01”/>

 <function name=”grid”>

 <tuple name=”geoloc”>
 <real name=”lon”/>
 <real name=”lat”/>
 </tuple>

 <tuple name=”wind”>
 <real name=”u”/>
 <real name=”v”/>
 </tuple>

 </function>

 </function>

 </dataset>

Dataset Descriptor

Custom
Adapters

NetCDF

LaTiS: Enabling Interoperability via a Universal Functional Data Model

Big Data

Text Data

Data Files

Tabular Data

Database

Web services

Bob RESTful Web Service Interface

Implements the OPeNDAP (DAP2) specification:

Usage:
 http://server/latis/dataset.suffix?projection&selection&filter

suffix: type of output/writer
projection: list of variables to return
selection: relative constraint
 (e.g. time>=2012-01-01)
filter: One or more functions to be applied to the
data

Example:
http://lasp.colorado.edu/lisird/tss/historical_tsi.csv?
time,Irradiance&Irradiance>1361.5

- Easily deployed as a Java Servlet with a highly
extendable plug-in architecture.
- Other service interfaces can be layered on top of the
LaTiS programming API.

See Also
LaTiS Open Source Project:
https://github.com/dlindhol/LaTiS

LASP Interactive Solar Irradiance Data Center
(LISIRD): http://lasp.colorado.edu/lisird/

Time Series Data Server (TSDS, first generation
of LaTiS based on NetCDF CDM): http://tsds.net

Scala/Java Programming API

● Designed around Functional Programming
principles including typed lambda calculus and
Category Theory

● Immutable data structures with no side-effects
promote provable and parallelizable code

● Lazy evaluation means that data will be read
only as needed, enabling the manipulation and
streaming of arbitrarily large datasets

● Syntax enables natural mathematical
expressions with data model components

Domain Specific Language (DSL)
for Scientific Data Analysis (evolving)

Make use of Scala's syntactic sugar and take
advantage of it's command-line interface (REPL)
and scriptability to provide a simplified language
that more directly meets the needs of data users
by allowing them to solve problems based on
higher level semantics that match their domain.

Sensor

...

Database Table Reader

TSML

Descriptors

NetCDF File

Readers

Hadoop

Binary Data

DAP Server
(Federated LaTiS Servers) OPeNDAP Reader

Simulations

TSML

TSML

TSML

TSML

TSML

TSML

TSML

TSML

TSML

Subsetting

Aggregation

Simulation

Re-gridding

...
Algebra

NetCDF

Protobuf

HDF

HTML

July 2014

mailto:doug.lindholm@lasp.colorado.edu
http://server/latis/dataset.suffix
https://github.com/dlindhol/LaTiS

