A Generalized Pipeline for Creating & Serving High-Resolution Satellite Imagery

Charles Thompson Summer ESIP July 18, 2012

Agenda

- Goal/purpose
- Details of current pipeline
- Known limitations (a sampling!)
- Additional processing considerations
- Future plans
- Random ending thoughts

(Lofty) Goal

 Cultivate a single pipeline that can efficiently satisfy the majority of imaging requests by PO.DAAC users

Current System: State of the Oceans

- Google Earth based web interface facilitating daily NRT image access for last 30 days
- Processing pipeline to be separate entity

Current Primary Components

- Transforms L2 and L3 science data products into grids of floating-point tiles
- Grids based upon equirectangular projection
- Organized by a hierarchy of directories

year/day_of_year/global_sizexy/n_tilesxy/parameter_name/time_of_day/

- Geolocation must exist or be derivable
- L3 reprojected if not equirectangular

Process for Adding a Data Product

- Build (or modify) a reader function
 - Returns product file contents in standardized structure
- Update configuration file

SCIENCE DATA

READER

CONFIG FILE

Product ID
Location
Reader module
Processing level
Parameters
Tile size
Spatial resolution

Tiling Example: Level 2 File

 Tradeoff between minimizing "low coverage" tiles and total number of tiles in

- Merges and converts tiles into images
 - Based upon space/time/scale/color parameters
- Coincident tiles can be averaged or follow precedence rule (latest/earliest)

Can combine multiple products

Floating-point Tiles to Images

- Converts imagery into format suitable for efficient web access
 - Currently KML pyramids

Current System Control

Some Known Limitations

- Differences in L2 and L3 time resolution
 - Current categories are day, night, daynight
 - L2 tiles retain time stamp in filename
- Binding tiles to equirectangular grid
 - Polar grids better for data at extreme latitudes
- Handling unique characteristics
 - Properly interpreting geometry
 - Destriping
 - Currently occurs in readers

Additional Processing Considerations

- Reprojection (again)
 - Assumption: resampling data more than once does not significantly degrade image quality
- Filling areas of missing data
 - Spatiotemporal functions
- Advanced averaging
 - Time adjusted for synoptic images

Future Plans (Short-Term)

- Transition image repackaging to Tiled WMS
 - Developed at JPL
 - Resolves KML pyramid limitations (I/O, flexibility)
 - Server already installed
 - More information on Tiled WMS and sample clients: *Interactively Browsing NASA Imagery in Full Resolution* (Ryan Boller, Geospatial Session)
- Ingest imagery into PO.DAAC archive with metadata and provenance information

Future Plans (Long-Term)

- Vector data pipeline upgrades
 - Transition from KML placemarks
 - Possible enhancements to Tiled WMS package
- Enable dynamic specification of scaling, colorizing, projection, and time range
 - Increased latency, maybe exposed as separate service
- Explore better/alternative ideas to reprojecting
 - Plotting L2 footprints

Random Ending Thoughts

- Fuzzy definition of "high resolution" warranting this approach
 - Straight WMS may be better suited at lower spatial resolutions
- Single pipeline framework may not allow all of the flexibility required by users
- More control = more specialized processing
- This is all a work in progress, any comments/suggestions/critiques appreciated!

