Toward Rich, User-Defined Aggregation & Subset-Selection Services

Dave Fulker,President, OPeNDAP, Inc

ESIP Summer Meeting on 9-12 July 2013
Thursday 3:30 PM Session

Aggregation / Subsetting — What’s It To You
A Thin Slice of
Subset-Selection History

✦ ‘70s — Relational data bases demonstrated
Data access ⇔ [data model + operations]
★ Ops included select-by-value subsetting
★ But without array types (generally)

✦ ‘80s–‘90s — CDF, NetCDF, HDF
★ Non-tabular data models (arrays / select-by-index)
★ But without select-by-value operations

✦ Mid ‘90s — DAP2 (DODS ➔ OPeNDAP)
★ Remote access (a Web service)
★ Most often employed via NetCDF API
Why Arrays Merited Sacrifice of Select-by-Value

✧ N-dim arrays are natural in key cases
 ✤ Imagery (satellites, radars, telescopes...)
 ✤ Simulations on rectangular meshes

✧ Arrays often yield great efficiencies
 ✤ Store/retrieve/subset without searching/testing
 ✤ Ideal for derivative & image-processing ops

✧ Furthermore...
 ✤ What does select-by-value mean?
Note: OPeNDAP Actually Offers Both Forms of Subset Selection

✧ DAP2 (1993) embraced “sequences”
 ✧ With select-by-value subset creation

✧ DAP2 distinguished these from arrays, where selection occurs by index
 ✧ Exception: bounding-box constraints may be applied to “coordinate-variable” arrays

✧ DAP sequences are relatively rare
 ✧ Partly because netCDF API ignores them
 ✧ Notable exceptions: ERDAP & JGOFS
A Thin Slice of (NetCDF) Aggregation History

✦ late ‘80s — Unidata discussions (incl ideas about Unix-style data filters) → NetCDF

✦ late ‘90’s — Zender’s NetCDF Operators included “concatenation”

✦ ‘00s — THREDDS virtual aggregation
 ✴ Defined to be a server configuration (employing NCML), akin to concatenation
 ✴ Adopted in other DAP-based servers
 ✴ Configured by providers, not users
NCML-Style (Virtual)
Aggregation Is Ideal when

✧ The results are “natural”
 • E.g., time is a coordinate rather than something encoded in (obtuse) granule names

✧ Multi-granule access enhances usability
 • Easy to subset in desired ways
 • Does not lead to excessive delays, etc.

✧ Providers can’t go wrong...
...but NCML-Based Aggregation by Providers Is Less than Ideal...

✦ If granules don’t “line up” naturally
 • E.g., swath data might be aggregated in various ways, none satisfying all users

✦ If cross-granule access is slow/costly
 • E.g., retrieval might involve per-granule overhead such that latencies accumulate

✦ Lesson:
 abstraction is nice; concrete is hard
Idea: Empower Users for Subset Selection & Aggregation

✦ Even in hard cases, users may know how & whether granules should be aggregated
✦ Users may know how they’d like to receive results of test-by-value operations
✦ Service-invocation protocols could allow (beyond subset selection) —
 ✨ A rich set of pre-retrieval operations or even workflows
OPeNDAP Is Pursuing

with Unidata & NOAA/PMEL

✦ Funds (NSF & NASA) to explore:
 • A rich set of pre-retrieval server functions (beyond index-based subset selection)
 • A protocol/language for invoking these

✦ Success would augment current efforts (NOAA-funded) to complete DAP4
Final Thoughts

✧ Pre-retrieval ops will be of increasing value (data-proximate computation...)

✧ Invocation language is key to success
 ✴ Must enable community-driven extension
 ✴ Aggregation expressions must refer to multiple granules

✧ There are significant challenges
 ✴ Granule/subset selection often requires iteration
 ✴ Operations affect provenance & other metadata
 ✴ Should avoid ops that increase xfer volumes
 ✴ Async/cached responses may be required...
Thank You

♦ OPeNDAP site — www.opendap.org

♦ Dave Fulker — dfulker@.opendap.org